3,599 research outputs found

    Psychometric properties of a short self-reported measure of medication adherence among patients with hypertension treated in a busy clinical setting in Korea.

    Get PDF
    BackgroundWe examined the psychometric properties of the Korean version of the 8-item Morisky Medication Adherence Scale (MMAS-8) among adults with hypertension.MethodsA total of 373 adults with hypertension were given face-to-face interviews in 2 cardiology clinics at 2 large teaching hospitals in Seoul, South Korea. Blood pressure was measured twice, and medical records were reviewed. About one-third of the participants (n = 109) were randomly selected for a 2-week test-retest evaluation of reliability via telephone interview.ResultsInternal consistency reliability was moderate (Cronbach α = 0.56), and test-retest reliability was excellent (intraclass correlation = 0.91; P < 0.001), although a ceiling effect was detected. The correlation of MMAS-8 scores with scores for the original 4-item scale indicated that convergent validity was good (r = 0.92; P < 0.01). A low MMAS-8 score was significantly associated with poor blood pressure control (χ(2) = 29.86; P < 0.001; adjusted odds ratio = 5.08; 95% CI, 2.56-10.08). Using a cut-off point of 6, sensitivity and specificity were 64.3% and 72.9%, respectively. Exploratory factor analysis identified 3 dimensions of the scale, with poor fit for the 1-dimensional construct using confirmatory factory analysis.ConclusionsThe MMAS-8 had satisfactory reliability and validity and thus might be suitable for assessment and counseling regarding medication adherence among adults with hypertension in a busy clinical setting in Korea

    Troubleshooting Arterial-Phase MR Images of Gadoxetate Disodium-Enhanced Liver.

    Get PDF
    Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field

    Accelerated galaxy growth and environmental quenching in a protocluster at z=3.24

    Get PDF
    We present a multiwavelength study of galaxies around D4UD01, a spectroscopically confirmed protocluster at z = 3.24 to investigate environmental trends. 450 galaxies are selected based on Ks band detection with photometric redshifts (photo-z) at 3.0 < z < 3.4, among which ~ 12% are classified as quiescent galaxies. The quiescent galaxies are among the most massive and reddest ones in the entire sample. We identify a large photo-z galaxy overdensity in the field, which lies close to the previously spectroscopically confirmed sources of the protocluster. We find that the quiescent galaxies are largely concentrated in the overdense protocluster region with a higher quiescent fraction, showing a sign of environmental quenching. Galaxies in the protocluster are forming faster than the field counterparts as seen in the stellar mass function, suggesting early and accelerated mass assembly in the overdense regions. Although weak evidence of suppressed star-formation is found in the protocluster, the statistics are not significant enough to draw a definite conclusion. Our work shed light on how the formation of massive galaxies is affected in the dense region of a protocluster when the Universe was only 2 Gyr old.Comment: 16 pages, 7 figures, accepted to Ap

    Latent NOTCH3 epitopes unmasked in CADASIL and regulated by protein redox state

    Get PDF
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy CADASIL is caused by more than a hundred NOTCH3 mutations. Virtually all encoded mutant proteins contain an odd number of cysteines. As such, structural changes in NOTCH3 may be the primary molecular abnormality in CADASIL. Thus, we sought evidence for structurally altered NOTCH3 protein in CADASIL tissue. Four antibodies were raised in rabbits against two non-overlapping N-terminal NOTCH3 sequences. These reagents were used in immunohistochemical experiments to detect epitopes in post-mortem CADASIL brains (n=8), control brains, and cells overexpressing NOTCH3. To determine the biochemical nature of NOTCH3 epitopes, we used these antibodies to probe pure NOTCH3-Fc fusion proteins treated with acid, urea, guanidinium, ionic detergents, acrylamide, and thiol- and phosphorus-based reductants. All antibodies avidly stained arteries in 8 of 8 CADASIL brain samples. The most prominent staining was in degenerating media of leptomeningeal arteries and sclerotic penetrating vessels. Normal appearing vessels from control brains were not reactive. Antibodies did not react with cultured cells overexpressing NOTCH3 or with purified NOTCH3-Fc protein. Furthermore, treatment of pure protein with acid, chaotropic denaturants, alkylators, and detergents failed to unmask N-terminal NOTCH3 epitopes. Antibodies, however, recognized novel N-terminal epitopes in purified NOTCH3-Fc protein treated with three different reductants (DTT, beta-mercaptoethanol, and TCEP). We conclude that CADASIL arteries feature latent N-terminal NOTCH3 epitopes, suggesting the first evidence in vivo of NOTCH3 structural alterations

    The mixed-valent titanium phosphate, Li2Ti2(PO4)3, dilithium dititanium(III/IV) tris­(orthophosphate)

    Get PDF
    The mixed-valent titanium phosphate, Li2Ti2(PO4)3, has been prepared by the reactive halide flux method. The title compound is isostructural with Li2TiM(PO4)3 (M = Fe, Cr) and Li2FeZr(PO4)3 and has the same 3 ∞[Ti2(PO4)3]2− framework as the previously reported Li3- xM 2(PO4)3 phases. The framework is built up from corner-sharing TiO6 octa­hedra and PO4 tetra­hedra, one of which has 2 symmetry. The Li+ ions are located on one crystallographic position and reside in the vacancies of the framework. They are surrounded by four O atoms in a distorted tetra­hedral coordination. The classical charge-balance of the title compound can be represented as Li+ 2(Ti3+/Ti4+)(PO4 3−)3
    corecore